To add or subtract rational expressions, you can use the least common denominator (LCD) method or the basic definition $\frac{a}{b} \pm \frac{c}{d}=\frac{a d \pm b c}{b d}, b \neq 0, d \neq 0$. This definition provides an efficient way of adding or subtracting TWO fractions that have no common factors in their denominators.

6 Combine the rational expressions.
a $\frac{x}{2 x-1}-\frac{1}{x+2}$

$$
\frac{x}{2 x-1} \cdot x+2 \cdot \frac{1}{x+2} \cdot 2 x-1
$$

$$
\frac{x(x+2)-(2 x-1)}{(2 x-1)(x+2)}
$$

$$
\begin{aligned}
& \text { b } \frac{4}{x}-\frac{x+5}{x^{2}-4}+\frac{4}{x+2} \\
& \frac{4}{x}-\frac{x+5}{(x+2)(x-2)}+\frac{4}{x+2} \\
& \frac{4}{x} \cdot(x+2)(x-2)-\frac{x+5}{(x+2)(x-2) \cdot x}+\frac{4}{x+2} \cdot x(x-2) \\
& \frac{\left.4 x^{2}-16-x^{2}-5 x+2\right)}{x(x+2)(x-2)} \\
& \frac{7 x^{2}-8 x}{x(x+2)(x-2)}
\end{aligned}
$$

$$
\begin{aligned}
& c \frac{x+1}{x^{2}-2 x-35}+\frac{x+6}{x^{2}+7 x+10} \\
& x+2 \cdot \frac{x+1}{(x-7)(x+5)}+\frac{x+6}{(x+5)(x+2)} \cdot x-7 \\
& \frac{(x+1)(x+2)+(x+6)(x-7)}{(x-7)(x+5)(x+2)} \\
& \frac{x^{2}+3 x+2+x^{2}-x-42}{(x-7)(x+5)(x+2)}=\frac{2 x^{2}+2 x-40}{(x-7)(x+5)(x+2)} \\
& \text { e } \frac{x-23}{x^{2}-x-20}-\frac{2}{5-x}= \\
& \frac{2(x-4)}{(x-7)(x+2)}
\end{aligned}
$$

$$
\text { d. } \frac{2 x}{1-2 x}+\frac{3 x}{2 x+1}-\frac{3}{4 x^{2}-1}
$$

$$
\frac{2 x}{-(2 x-1)}+\frac{3 x}{2 x+1}-\frac{3}{(2 x-1)(2 x+1)}
$$

$$
\frac{-2 x}{2 x-1} \cdot 2 x+1+\frac{3 x}{2 x+1} \cdot 2 x-1 \cdot \frac{3}{2 x+1 \cdot 2 x-1} \cdot \frac{3 x-1)(2 x+1)}{(2 x-1}
$$

$$
\frac{-4 x^{2}-2 x+6 x^{2}-3 x-3}{(2 x-1)(2 x+1)}
$$

$$
\frac{2 x^{2}-5 x-3}{(2 x-1)(2 x+1)}=\frac{(2 x+1)(x-3)}{(2 x-1)(2 x+1)}=\frac{x-3}{2 x-1}
$$

$$
\frac{x-23}{(x-5)(x+4)}-\frac{2}{-(x-5) \cdot x+4}
$$

$$
\frac{x-23}{(x-5)(x+4)}+\frac{2 x+8}{(x-5)(x+4)}
$$

$$
\begin{aligned}
& \frac{3 x-15}{(x-5)(x+4)} \\
& \frac{3(x-5)}{(x-5)(x+4)}=\frac{3}{x+4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { f. } \frac{x-2}{(x+2)^{2}}+\frac{x}{5 x+10}-\frac{1}{25} \\
& \frac{x-2}{(x+2)^{2}}+\frac{x}{5(x+2)}-\frac{1}{25} \\
& \frac{x-2}{(x+2)^{2}} \cdot 25+\frac{x}{5(x+2) \cdot 5(x+2)} \cdot 5(x+2)-\frac{1}{25} \cdot(x+2)^{2} \\
& \frac{25 x-50+5 x^{2}+10 x-x^{2}-4 x-4}{25(x+2)^{2}} \\
& \frac{4 x^{2}+31 x-54}{25(x+2)^{2}}
\end{aligned}
$$

COMPLEX FRACTIONS AND THE DIFFERENCE QUOTIENT

Fractional expressions with separate fractions in the numerator, denominator, or both are called complex fractions.

To simplify a complex fraction, combine the fractions in the numerator into a single fraction and then combine the fractions in the denominator into a one fraction. Then invert the denominator and multiply

7 Simplify the complex fraction
a $\frac{\frac{1}{x+2}+1}{\frac{x}{3}-1}$
b. $\frac{2+\frac{10}{x}}{1-\frac{25}{x^{2}}}$

$$
\frac{\frac{1}{x+2}+\frac{x+}{x+}}{\frac{x}{3}-\frac{3}{3}}
$$

$\frac{\frac{1}{x+2}+\frac{x+2}{x+2}}{\frac{x}{3}-\frac{3}{3}}$

$$
\frac{\frac{2 x}{x}+\frac{10}{x}}{\frac{x^{2}}{x^{2}}-\frac{25}{x^{2}}}
$$

$$
\uparrow
$$

$\frac{\frac{x+3}{x+2}}{\frac{x-3}{3}}=\frac{x+3}{x+2} \cdot \frac{3}{x-3}=\frac{3(x+3)}{(x+2)(x-3)}$

To simplify an expression with negative exponents, factor out the common factor with the smaller exponent
NOTE When you factor, you subtract exponents.
8 Simplify the expression and make sure all the exponents are positive

$$
\begin{aligned}
& \text { a. }(x-1)^{-\frac{1}{3}}-x(x-1)^{-\frac{4}{3}} \\
& \begin{array}{l}
\frac{1}{(x-1)^{1 / 3}}-\frac{x}{(x-1)^{4 / 3}} \\
\frac{1}{\sqrt[3]{x-1}}-\frac{x}{\sqrt[3]{x-1)^{4}}}
\end{array} \begin{array}{l}
\frac{x-1-x}{(x-1)^{3} \sqrt{x-1}} \\
\frac{-1}{(x-1) \sqrt[3]{x-1}}
\end{array} \\
& \begin{array}{l}
\text { b. } \frac{\left(4-x^{2}\right)^{\frac{1}{2}}+x^{2}\left(4-x^{2}\right)^{-\frac{1}{2}}}{4-x^{2}} \\
\begin{array}{l}
\frac{\left(4 \cdot x^{2}\right)^{1 / 2}+x^{2}}{\left(4-x^{2}\right)\left(4-x^{2}\right)^{1 / 2}} \\
\frac{\left(4 \cdot x^{2}\right)^{1 / 2}+x^{2}}{\left(4-x^{2}\right)^{3 / 2}}
\end{array} \int \frac{\sqrt{4-x^{2}}+x^{2}}{\left(\sqrt{4-x^{2}}\right)^{3}} \\
\frac{\sqrt{4-x^{2}}+x^{2}}{\left(4-x^{2}\right) \sqrt{4-x^{2}}}
\end{array} \\
& \frac{1}{\sqrt[3]{x-1}}-\frac{x}{(x-1) \sqrt[3]{x-1}}
\end{aligned}
$$

9 Rewrite the expression by rationalizing the numerator.
a. $\frac{\sqrt{9+h}-3}{h} \cdot \sqrt{9+h}+3$
b. $\frac{\sqrt{x+2}-\sqrt{x}}{2} \cdot \sqrt{x+2}+\sqrt{x}$

$$
\frac{9+h+3 \sqrt{9+h}-3 \sqrt{9+h}-9}{h(\sqrt{9+h}+3)}
$$

$$
\frac{h}{h(\sqrt{9+h}+3)}=\frac{1}{\sqrt{9+h}+3}
$$

$$
\begin{aligned}
& \frac{x+2+\sqrt{x(x+2)}-\sqrt{x(x+2)}-x}{2(\sqrt{x+2}+\sqrt{x})} \\
& \frac{2}{2(\sqrt{x+2}+\sqrt{x})}=\frac{1}{\sqrt{x+2}+\sqrt{x}}
\end{aligned}
$$

